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Probabilistic Constrained Load Flow Considering
Integration of Wind Power Generation

and Electric Vehicles
John G. Vlachogiannis

Abstract—A new formulation and solution of probabilistic con-
strained load flow (PCLF) problem suitable for modern power sys-
tems with wind power generation and electric vehicles (EV) de-
mand or supply is represented. The developed stochastic model
of EV demand/supply and the wind power generation model are
incorporated into load flow studies. In the resulted PCLF formu-
lation, discrete and continuous control parameters are engaged.
Therefore, a hybrid learning automata system (HLAS) is developed
to find the optimal offline control settings over a whole planning
period of power system. The process of HLAS is applied to a new
introduced 14-busbar test system which comprises two wind tur-
bine (WT) generators, one small power plant, and two EV-plug-in
stations connected at two PQ buses. The results demonstrate the
excellent performance of the HLAS for PCLF problem. New for-
mulae to facilitate the optimal integration of WT generation in cor-
relation with EV demand/supply into the electricity grids are also
introduced, resulting in the first benchmark. Novel conclusions for
EV portfolio management are drawn.

Index Terms—Constrained load flow, correlation model, elec-
tric vehicles integration, planning period, stochastic learning
automata, wind power penetration.

I. INTRODUCTION

T HE constrained load flow (CLF) problem deals with
the adjustment of the power system control variables in

order to satisfy physical and operating constraints. Therefore, a
number of algorithms have been developed, based on modifi-
cation of the Jacobian matrix formed in the standard load flow
method using sensitivity or injection-changing-error feedback
control [1], [2] or evolutionary computation techniques [3], [4].
The CLF problem is also expressed as a constrained optimiza-
tion problem falling within the general class of optimal power
flow (OPF) problems [5]–[8]. In most published methods,
one or more known sets of generation and loads are assumed,
i.e., the input variables are assumed deterministically known.
These methods [1]–[8], however, are inefficient in providing
offline settings of control variables that must remain optimal
for a whole planning period. The problem of offline control
settings has been tackled by the probabilistic CLF (PCFL)
formulation [9], [10]. The method developed in [9] takes into
account load uncertainties and generating unit unavailability
modeled as probability density functions and provides control
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settings satisfying constraints over a whole planning period.
Dispatching effects and topological variations are considered
using probabilistic techniques. The control variable settings
are based on sensitivity analysis of the constrained variables
with respect to the control variables. Although this method has
shown to provide settings satisfying the required constraints, it
provides suboptimal solutions dependent on the initial values of
the control settings. In [10], the problem is solved by means of
reinforcement learning (RL) method. It is formulated as a mul-
tistage decision problem. Optimal control settings are learned
by experience adjusting a closed-loop control rule, which is
mapping states (load flow solutions) to control actions (offline
control settings). The control settings are based on rewards, ex-
pressing how well actions work over the whole planning period,
i.e., how well the operating limits of constrained variables are
satisfied. In [11], the problem is solved by the implementation
of ant colony system (ACS) method achieving better results
than [10]. However, in all above studies, CLF problem reflects
on conventional structure of the power systems.

In current open energy market environment, the high penetra-
tion of wind power into the power systems and the forthcoming
introduction of electric vehicles (EV) into the transport system,
the energy sector, mainly the electric power system, will suffer
a dramatic change due to this important and expected issue. So,
there is the need to develop new models, to facilitate the op-
eration and optimal control of the new structure of the power
systems. Therefore, in addition to conventional generation and
load pattern considered in the PCLF problem, the wind power
generation and EV demand/supply models are also included. In
the state-of-the-art published material related to the forthcoming
EV integration into the electric networks [12]–[19], there is only
one EV demand model for load flow studies [19]. In [19], the
charging process is developed based on queuing theory [20]
and considering maximum capacity of plug-in EV at each load
bus ( queue). So, it has limited applicability. In this
paper, a new general model of EV for load flow studies is devel-
oped where the charging and discharging processes are consid-
ered. In this model, there is no limit in the capacity of plug-in
EV at each load bus ( queue [20]). Moreover, the wind
power generation is included using a stochastic profile based on
the wind velocity probability function [21]–[26].

The stochastic, nonlinear, nonconvex, nonsmoothness nature
of the PCLF problem as well as the mixed type of control vari-
ables (continues and discrete) request the implementation of
a hybrid stochastic optimization technique. A feasible and ef-
fective technique could be based on Learning Automata (LA)
[27]–[40]. In recent years, LA have attracted the attention of
scientists and technologists from a number of disciplines, and
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have been applied to a wide variety of practical problems in
which a priori information is incomplete. In fact, observations
measured from natural phenomena possess an inherent proba-
bilistic structure [34]. The main advantages of LA over heuristic
optimization and Monte Carlo techniques are: 1) the LA guar-
antee a robust behavior without the complete knowledge of the
stochastic and uncertain environment to be controlled (in con-
trast, Monte Carlo needs complete knowledge of the environ-
ment, that means large number of simulations and therefore
large computational time); 2) the action space of LA is not re-
quired to be a metric space as in Monte Carlo and heuristic tech-
niques; 3) the LA lead to global optimization, where in every
stage, any element of the action set can be chosen, in contrast
to heuristic techniques where the new value of the control vari-
able has to be chosen close to the previous value; 4) the con-
trast between Monte Carlo and LA is that LA learn more about
which element causes good response with the highest proba-
bility according to the repeated procedure [36]; and 5) LA uses
a sigmoid multiobjective learning signal expressing the degree
of satisfaction of the operating limits of all constrained vari-
ables in contrast to Monte Carlo, where the determination of
the weighting factors among objectives is difficult [36]. There-
fore, in this paper, a hybrid learning automata system (HLAS)
is implemented to determine the optimal settings of discrete
and continuous control variables involved in the PCLF problem.
The implemented HLAS comprises new introduced reward-in-
action continuous LA (R-CALA). Results are obtained on the
introduced 14-busbar test system comprised by one small power
plant (SPP), two WT generators, and two EV-plug-in stations
connected at two PQ buses. In this system, three transformer
taps with discrete positions, two shunt VAR compensation de-
vices (one with continuous and one with discrete reactive power
output), and a voltage magnitude are considered control vari-
ables. The results demonstrate the excellent performance of the
proposed HLAS for the new formulation of PCLF problem.

In conclusion, the introduction of EV in correlation with high
penetration of wind energy into the electricity grid is a unique
opportunity to decrease oil, coal/fossil fuel dependency,
emissions from the transport sector, and achieving more flex-
ible power pricing. This paper contributes clearly in the litera-
ture with: 1) the new formulation of the PCLF problem incor-
porating wind power and EV stochastic profiles, 2) implementa-
tion of HLAS for PCLF comprising new R-CALA components,
3) development of general EV demand/supply model for load
flow studies, 4) introduction of new formulae facilitating the
optimal incorporation of wind power in correlation with EV de-
mand/supply into the electric networks and resulting in the first
benchmark, and 5) novel conclusions useful for EV portfolio
management and vital importance in countries with high wind
penetration are drawn.

II. CONSTRAINED LOAD FLOW PROBLEM

The CLF problem can be expressed by the two sets of non-
linear equations [10]:

(1)

(2)

where represents the nodal power injections vector; rep-
resents the constrained variables vector (power flows, reactive
powers of PV buses, voltage at PQ buses, etc.); represents
the state vector (voltage angles and magnitudes); and repre-
sents the control vector (transformer tap positions, shunt VAr
compensations, voltage of PV buses, etc.)

The objective of constrained load flow is to maintain some
or all the elements of and vectors within given operating
limits under stochastic generation and load variations. This can
be achieved by selecting appropriate (robust) values of control
variables under random variations of loads and generations
(noise factors) within their operating range [10].

III. WIND POWER GENERATION FOR LOAD FLOW STUDIES

The real power loss of a WT is estimated by the polynomial
expression [24]

(3)

where the mechanical power output is given by

(4)

The power coefficient is a nonlinear function of the tip
speed ratio and the pitch angle given by [21]:

(5)

where

(6)

The real power output of WT is given by

(7)

The air density , blade radius , blade pitch angle ,
tip speed ratio , power loss coefficients , cut-in,
and cut-out wind speed velocity are given in Section VI. The
wind velocity follows the Weibull distribution [26]:

(8)

In the programming code of load flow, values of wind velocity
(8) are iteratively calculated using the following formula [41]:

(9)

where is random variable uniformly distributed. The shape
and scale factors define the wind profile and given in

Section VI.



1810 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 24, NO. 4, NOVEMBER 2009

Considering constant power factor of the WT, the -limits
enforced in the generator during the load flow calculations are
given by [25]

(10)

Using (7), the -limits are obtained as

(11)
During the load flow process, the WT generator’s voltage

output is considered constant at the nominal value (1 p.u.).

IV. EV DEMAND/SUPPLY MODEL FOR LOAD FLOW STUDIES

The charging and discharging process of EV at each load bus
are developed based on probabilistic models of statistics.

From the open literature, it is well known that all battery sys-
tems of EV are chemical storage devices and their charge/dis-
charge modus operandi are chemical processes. So, they are
exponential functions over time. Specifically, the instantaneous
charging status of the battery system of EV is simulated by the
following exponential formula [19]:

(12)

where the current status of the battery system is ; the max-
imum power capacity of EV is ; and the maximum
charging time is . Similarly, the instantaneous discharging
status of the battery system of EV is simulated by the following
exponential formula:

(13)

The constant parameter can be calculated assuming that a
fully empty battery system of EV absorbs 97% of maximum
power capacity approximately in the third part of the maximum
charging time, . This is a general assumption for most of
the modern battery systems.

Full charge: Assuming that if a plug-in EV needs hours to
be fully charged, then using (12), the active power demand from
the network is given by

(14)

Full discharge: Assuming that if a plug-in EV needs
, hours to be fully discharged, then using (13), the

active power injection into the network is given by

(15)

The active power demand/supply from/into the network (14)
and (15) is restricted only by the charging/discharging rate ca-
pability of each EV battery system [18].

A. EV-Plug-In System

Using (14) and (15), each load bus supports a system of
plug-in EV with total active power (difference between active
power demand and injected power into the network) given by

(16)

Integrating (14) and (15) for a system of plug-in EV, the
total energy demand/supply is obtained as

(17)

where .
A portion of plug-in EV is considered as charged EV and

the rest as discharged ones . The mean portion of discharged
EV over all plug-in EV, the expected number of plug-in
EV and the mean service time at each load bus will be
derived from measurements on a real system. Since there is no
such system at the moment, in this paper, they are considered as
predefined parameters.

In terms of queuing theory, charged/discharged EV are con-
sidered as customers to be served in queue [20]. As
queuing theory mandates, the number of charged/discharged
EV follows Poisson distribution and their service time follows
the exponential distribution [19], [20]. Specifically, the number

of plug-in EV at each load bus in a fixed period of time
(e.g., in an iteration of load flow process) follows the following
distribution:

(18)

where is a positive real number, equal to the expected number
of plug-in EV in an iteration of load flow.

In the programming code of load flow, the number of
plug-in EV at each load bus (18) is iteratively calculated using
the Knuth algorithm [42].

The service time for each EV [time to be fully
charged or fully discharged ] follows the exponential
possibility distribution. If the mean of service time is , then
the probability is given by

(19)

In the programming code of load flow, the service time of
each plug-in EV (19) is iteratively calculated using
the following formula:

if
else

(20)

where is random variable uniformly distributed.
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Finally, considering unity constant power factor of the battery
systems, the reactive power demand/supply of plug-in EV is
equal to zero.

B. Regular Load

All other types of demand are considered as regular load fol-
lowing the same probability density function. Hence, a single
distribution can be used for this real/reactive demand at each
load bus [43]. The probability density function of the real/re-
active power load can be either derived from measurements or
assumed to be under the normal distribution . In the pro-
gramming code of load flow, real/reactive power load at each PQ
bus is iteratively generated using the following formula:

(21)

where is random variable uniformly distributed; is the
inverse error function; mean values are those given as fixed
ones in the data of the system; and is the standard deviation.

V. HLAS FOR PCLF PROBLEM

There is a strong and growing interest within the engineering
community in the use of efficient optimization techniques for
several purposes. Optimization techniques are commonly used
as a framework for the formulation and solution of design prob-
lems. For example, in the context of control, the objective of
an online optimization scheme is to track the real process op-
timum as it changes with time. This must be achieved without
the process constraints to be violated.

In this paper, an LA-based system is implemented to solve the
PCLF problem in modern power systems with stochastic wind
power generation and EV demand/supply. Since the problem
involves discrete and continues control variables, there is the
need of implementation of an HLAS. The basic components of
HLAS are represented in the next two subsections. In general,
LA are divided into two main groups: finite action-set learning
automata (FALA) and continuous action-set learning automata
(CALA) based on whether the action set is finite or continuous.

A. S-Model Finite Actions Learning Automata (S-FALA)

FALA has finite number of actions and has been studied
extensively. For an -action FALA , , the action
probability distribution is represented by an -dimensional
probability vector at instant- that is updated by the
learning algorithm. The S-model of FALA (or S-FALA) is the
FALA whose response takes continuous values over the unit
interval [0, 1]. The response at instant- in the S-FALA
means the degree of unfavorableness, which approaches 0 if
the response is favorable and approaches 1 if the response is
unfavorable [36]. The chronological sequence of probability
vectors is a discrete-time Markov process on a suitable
state space. A general linear reinforcement learning scheme
in S-FALA for updating action probabilities is represented as
follows.

If an action , at instant- is chosen
, then its probability is updated by

(22)
and the probabilities of other actions at the same instant-
are updated using

(23)

In (22), the probability of taking an action is increased
if the response corresponding to this action is favorable [
is close to 0] and otherwise is decreased [ is close to 1].
In (23), the probability of taking other actions , is
increased if the response corresponding to chosen action
is unfavorable and otherwise is decreased. The penalty and
reward parameters in (22) and (23) are denoted, respectively,
by and defined over the interval [0, 1]. The above
linear reinforcement-based S-FALA scheme for ,

, and are called, respectively, the linear
reward-penalty scheme, the linear reward
-penalty scheme, and the linear reward-in-

action scheme [36].

B. Continuous Actions Learning Automata (CALA)

In many applications, we have a large number of discrete
actions or continuous actions. However, the S-FALA with
too large number of actions converges slowly. In such appli-
cations, CALA, whose actions are chosen from real line, is
very useful. In the literature, there are four CALA schemes
[37]–[40]. In this paper, a new R-CALA is introduced. In
the introduced R-CALA, the action probability distribution is
represented by normal distribution function with mean
and standard deviation . At each instant- , the mean and
standard deviation are updated by reinforcement learning signal

emitted by the environment. Specifically, the
interaction between R-CALA and the random environment
takes place as iterations by the following process: Instant-
begins by selection of an action . This action is generated
as a random variable from the normal distribution function with
mean and standard deviation . The selected action

is applied to the random environment and R-CALA re-
ceives an evaluated signal , from the environment.
Then, the R-CALA updates the parameters and
using the following simple rules:

if
else

(24)

(25)

where , are the limits of action; is the minimum
value of reinforcement learning signal it ever encountered until
instant .

The main advantage of the new simplified R-CALA is that no
parameters need to be regulated, and therefore, it is very adapt-
able and sensitive to highly stochastic environments.
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Fig. 1. Architecture of HLAS for probabilistic CLF problem.

C. Hybrid Learning Automata System (HLAS)

As previously mentioned, the PCLF problem involves dis-
crete and continuous control variables. Therefore, S-FALA and
R-CALA are interconnected in the architecture showed in Fig. 1,
where cN and dN are the number of continuous and discrete
control parameters, respectively. In general, the HLAS is a sto-
chastic learning system comprising continuous (R-CALA) and
discrete (S-FALA) LA (components) to find optimal settings of
continuous and discrete control variables, respectively. It is a
robust system since it can find very fast optimal solutions in a
large stochastic and partially observed environment. At each in-
stant, HLAS receives an operating point (state) of the environ-
ment as input and estimates a sigmoid reinforcement learning
signal (multiobjective function). As output, control settings are
determined by HLAS components enforced in the stochastic en-
vironment. The stochastic environment receives these actions
responding a new operating point (state) and so on. Briefly, op-
timal control settings are learned by HLAS adjusting a closed-
loop control rule, which maps states to control actions so as
the reinforcement learning signal received by HLAS to be min-
imized. Specifically, the HLAS for PCLF proceeds as follows.
Step 1) A random operating point comprised by: 1) pattern

of regular load using (21), 2) pattern of EV de-
mand/supply [using (16), Knuth algorithm, (20)], 3)
pattern of wind power generation [using (7), (9)],
and 4) set of control actions [using (22), (23) for
S-FALA and (24), (25) for R-CALA] is generated.

Step 2) A load flow is executed in power system’s simulator
and a reinforcement learning signal is
calculated. This expresses the degree of satisfaction
of the operating limits of all constrained variables.
The appropriate reinforcement learning signal for
the PCLF problem is introduced in the following
subsection.

Step 3) All components of HLAS receive the same reinforce-
ment learning signal . According to , each
component updates its own action probability [(22),
(23) for S-FALA and (24), (25) for R-CALA].

Step 4) Steps 1–3 are repeated until the reinforcement
learning signal is fixed in a minimum value
or the maximum number of iterations is achieved
(15 000 in this study).

Step 5) After iterative process, each S-FALA and R-CALA
of HLAS adopts as optimal control action over the
whole planning period the action that has the highest
probability. The whole planning period is delimited
by: 1) the upper and lower values of regular and EV
load demand and 2) lower and upper values of WT
real power generation, respectively.

D. Reinforcement Learning Signal

Application of the HLAS procedure in PCLF problem is
linked to the choice of an appropriate reinforcement learning
signal so that its value to be minimized while the limits of the
constrained variables are satisfied for the whole planning pe-
riod. An enforced empirical strategy is to consider the variations
of constrained variables close to the means of their operating
intervals as a measure for the reinforcement learning signal.
So, it is computed by the average of all constrained variables at
iteration- , normalized in the interval: [0, 1], as follows:

(26)

where is the number of constrained variables and is the
value of -constrained variable bounded by lower and
upper limit.

So, in terms of machine learning, (26) is an immediate
reward which determines if the limits of all constrained vari-
ables are satisfied.

VI. RESULTS

A. PCLF Solution

The above described HLAS procedure is applied to CLF
problem on the introduced 14-busbar test system (Fig. 2).

The 14-busbar test system is developed based on the standard
IEEE 14-bus system and consists of the slack bus (node 1), four
PV buses (nodes 2, 6, 7, and 10), ten PQ buses, and 18 branches.
The characteristics of lines are kept similar to those given in the
standard IEEE 14-bus system [44]. The available reactive power
of capacitor connected at bus-3 is [0, 30] MVAr and the discrete
values of reactive power of capacitor banks connected at bus-14
are {0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30} MVAr. The capacitors
at buses 6 and 10 are fixed at value of 15 MVAr. Also, a fixed
network topology is assumed. The regular load at nodes 2–6, 9,
10, and 12–14 follow normal distribution with mean values of
those given as nominal ones in Appendix and standard devia-
tion of 4%. The total installed capacity in the system is equal to
465 MW. In the introduced test system, two large power plants
are connected at nodes 1 and 2, two WT-2 MW connected at
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Fig. 2. One-line diagram of 14-busbar test system.

nodes 7 and 10, an SPP (10 MW) connected at node 6, and
two EV-plug-in stations connected at nodes 8 and 11. The ar-
chitecture of this system is useful for further research of EV
demand/supply in direct relation with wind power generation
(nodes 7 and 8) as well as in relation with other small energy
sources (nodes 6 and 11).

In this study, the following parameters of WT are consid-
ered: mechanical power ; apparent electric power

; air density ; blade radius
; tip speed ratio ; pitch angle ;

real power loss coefficients: , ,
and ; cut-in and cut-out wind speed:
5 m/sec and 25 m/sec, respectively; shape and scale factor:

and , respectively. It is important to note that the wind
profile is not unique, as there is an infinite number of wind pro-
files that could be used [21], [22]. In this study, the specific
model of Tesla Roadster EV is used [45]. A full charge of the
battery system of Tesla Roadster EV requires
using the high power connector which supplies 70 A, 240 V
electricity [45]. So, the maximum power capacity is

and the constant parameter is cal-
culated at a value of 10.137525. Using the developed formula
(17), a full charged Tesla Roadster EV stores 53 kWh of elec-
trical energy; the same value is reported in the technical specs
of Tesla Roadster [45]. The battery system’s charging and dis-
charging rate capabilities of Tesla Roadster EV are not given in
[45], and therefore, they are not considered in this study. The
mean portion of discharged EV over all plug-in EV at nodes 8
and 11 is set at a value of 20% and 25%, respectively. The ex-
pected number of plug-in EV at nodes 8 and 11 is set at a value
of 120 and 125, respectively. The mean service time of plug-in
EV at both nodes is considered at 2.5 h.

The control variables of PCLF comprise all transformer
taps discretized at 16 positions in the range of
[0.9, 1.05], continuous reactive power compensation at bus 3

, discrete capacitor banks connected at bus 14 , and
voltage magnitude of slack bus-1 in the range of [0.96, 1.04]
p.u. (Fig. 2). Specifically, the upper part of Table I shows the
limits of all control variables. In the lower part of Table I, the
upper and lower limits of all constrained variables are shown.

TABLE I
LIMITS OF CONTROL AND CONSTRAINED VARIABLES

OF 14-BUSBAR TEST SYSTEM

These include reactive powers at generation buses 2, 6,
7, and 10; apparent power flows in the lines 2–3 and 5–6;
and voltages at load buses .

Table II gives the optimal reinforcement learning signal, the
optimal control actions, and the operating space of constrained
variables when the greedy-optimal action is enforced over
the whole planning period. After HLAS process, the optimal
reinforcement learning signal emitted by the stochastic envi-
ronment is 0.01366 and achieved rapidly after 329 iterations
(Fig. 3). Since the initial value of reinforcement learning signal
is 0.04917, HLAS achieves a significant control efficiency of
72.22%. From Table II, it can be seen that even when applying
the greedy-optimal control settings, reactive production at node
6 violates its upper limit. In Table II, these results are
also compared with the base case where nominal values of
control actions are enforced over the whole planning period.

It can be seen that the HLAS provides improved results, since
the limits of reactive production at nodes 2 and 7, lower and
upper limit of reactive production at node 6 and node 10, respec-
tively, upper limit of the apparent power flow in line 5–6, and
lower limits of voltages at nodes 3 and 4 are not violated. How-
ever, the violation of upper limit of reactive production at SPP

is due to the increased reactive demands of the system
and the available control actions cannot enforce the violated
limit. One way of enforcing violated limit is to relax the con-
stant voltage limitation at node 6 and allowing the voltages at
nodes 2 and 10 to be set at higher values.

B. Integration of Wind Power in Correlation With Electric
Vehicles into Electricity Grids

Motivated by a recent research dealing with impact of wind
power variations on the operation of power systems considering
load dynamics [46], here, a benchmark for optimal integration
of wind power in association with EV into the steady-state op-
eration of power systems is set up. New formulae to facilitate
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TABLE II
PCLF RESULTS OF HLAS ON 14-BUSBAR TEST SYSTEM

Fig. 3. Evolution of best value of reinforcement learning signal (logarithmic
scale of iteration numbers).

TABLE III
STATISTICAL ANALYSIS FOR WT GENERATION AND EV

DEMAND OF 14-BUSBAR TEST SYSTEM

the modeling of wind power in correlation with EV are also
introduced inspired by similar recent research [47].

Specifically, in Table III, the mean and standard deviation
of real power outputs of two WT-2 MW and load of two
EV-plug-in-stations in the 14-busbar test system are given.
The large deviation around the mean values of wind generation
indicates uncertainty in wind availability. On the contrary, there
is no large uncertainty in EV load demand/supply. The WT-2
MW at node 7 supply EV-plug-in station at node 8 7018 times
out of 15 000 (positive injection of 46.787%). So, the WT-2
MW cannot uninterruptedly supply an expected number of 120
Tesla Roadster plug-in EV. The positive injection is grater than
97.5% if the expected number of Tesla Roadster plug-in EV
is lower than 46.79. Consequently, the wind penetration of a

WT-2 MW starts to be feebler as the expected number of Tesla
Roadster plug-in EV exceeds 47.

To facilitate the correlated modeling of two stochastic pro-
files, a number of metrics are obviously required. Here, the es-
sentials of them are introduced. Specifically, the wind power
penetration into EV-plug-in station is defined as

(27)

where is the installed capacity of the wind park and
is the peak load demand/supply of the EV-plug-in

station.
The energy penetration, which provides a measure of the

amount of wind energy produced during a given period com-
pared to the total energy demand/supply of the EV-plug-in
station for this period (17), is given by

(28)

The correlation of the two profiles is vital as it provides an
indication of when the peak of the wind power occurs relative
to the load peak demand/supply of EV-plug-in station, given by

(29)

where and are the wind power generation
and EV-plug-in station load demand/supply at iteration- , re-
spectively; and denote the average value of the wind
power generation and EV-plug-in station load demand/supply,
respectively; and correspond, respectively, to their
standard deviations; and is a given period of each assessed
scenario.

Finally, we define the random variable , which is the prob-
ability of a wind generation and EV demand/supply profile in
a certain period (e.g., a day) having a certain correlation coeffi-
cient, and a certain energy ratio, . Assuming that

and are independent, the probability of random
variable is given by

(30)

whose distribution can be plotted through analysis of databases
of wind power and EV demand/supply. Obviously, the larger the
databases are, the more accurate the probability distribution of
random variable is resulted. Since there is no real data base
for the correlated integration of wind power with EV demand/
supply at the moment, in this study, the probability of random
variable is plotted from offline databases obtained using (7)
for WT-2 MW (node-7) and (16), (17) for EV-plug-in station
(node-8).

The probability distributions of energy penetration (28) and
correlation factor (29) are plotted in Figs. 4 and 5, respectively.
In this analysis, the diurnal EV load and wind power profiles
are created by samples of iterations. So, databases cre-
ated by 74 825 iterations cover 1825 days (five years). Then, the
probability distribution of random variable (30) is calculated
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TABLE IV
DATA OF THE 14-BUS TEST SYSTEM (IN IEEE FORMAT)

Fig. 4. Probability distribution of wind energy penetration to EV-plug-in sta-
tion for � � ���.

using plotted data of Figs. 4 and 5. The probability distribution
of wind energy penetration (Fig. 4) points out that part of the
time a WT-2 MW can supply EV-plug-in station with peak load
demand of 1.666 MW. The probability distribution plotted in
Fig. 5 verifies that the correlation degree of the two stochastic
profiles is within the range 0.3 and 0.3. Namely, the two sto-
chastic profiles are slightly correlated, maybe due to the diurnal
aspect of the wind resource.

These conclusions are of vital importance for the EV portfolio
management. For example, utilities of the system could assign
lower prices for EV customers during periods with
and (namely, periods with high wind penetra-
tion and negative WT-EV stochastic correlation). As a general
proposal, utilities should use real-time pricing tariffs which can

Fig. 5. Probability distribution of the correlation factor between daily wind
power and EV demand/supply.

both smooth-out the diurnal WT generation and EV demand, al-
lowing the last to be increased in response to the availability of
costless wind generation. So, holding with similar recent studies
[48], the real-time pricing methodology can increase the pene-
tration and utilization of wind power in the system.

Concluding this work, the following originality is set off.
The CLF is modified as a stochastic optimization problem

(PCLF) incorporating WT and EV stochastic models. A
general EV demand/supply model for load flow studies is
developed. The PCLF problem is solved based on stochastic
learning techniques using an HLAS. The HLAS comprises new
R-CALA useful in this and other power engineering processes.
It is demonstrated that R-CALA performance is successful
in highly stochastic environment. Its learning methodology
improves drastically the HLAS performance despite the wide
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range values of control actions. The capability of WT-2 MW to
supply specific model of plug-in-EV is analyzed establishing
the first benchmark. New formulae useful in correlated integra-
tion of two stochastic profiles into the network are introduced
and conclusions are drawn for the first time.

As a further work is suggested:
HLAS can be expanded considering more stochastic aspects

such as variable grid topologies. HLAS can be slightly modified
to be implemented as a multi-agent system (MAS) for the man-
agement of new grid architectures. The introduced 14-busbar
test system can be further improved taking into account more
aspects of modern real power systems. Finally, the developed
EV model, new formulation of power flow, and the obtained
conclusions in correlated integration of WT with EV into the
network can be used in EV portfolio management and market-
based power flow control (OPF).

VII. CONCLUSIONS

This paper solves the probabilistic constrained load flow by
modifying it as an optimization problem considering stochastic
models of wind power generation and electric vehicles demand/
supply. Therefore, a stochastic model for wind turbine genera-
tion is used and a new stochastic model for electric vehicles de-
mand/supply is developed for load flow studies. Due to the hy-
brid nature of control variables of the probabilistic constrained
load flow problem, a hybrid learning automata system is de-
veloped comprised by new reward-inaction continuous learning
automata. It is implemented to solve the problem on a new
14-busbar test system. The system except conventional compo-
nents comprises two wind turbine generators and two electric
vehicles’ plug-in stations. Promised results are gained. New for-
mulae for integration of wind power in correlation with electric
vehicles demand/supply into the electricity grids are also intro-
duced resulting in the first benchmark for optimal integration of
two stochastic profiles. Crucial conclusions for further studies
on electric vehicles portfolio management are drawn.

APPENDIX

Table IV shows the data of the 14-bus test system (in IEEE
format).
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